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ABSTRACT

Photographic meteof data published by McCrosk y and
Posen are analyzed using a method similar to one suggested by
Orrok. It is found that, to a first approximation, the mass
and velocity distribution functions‘are independent. Least
squares analysis leads to a cumulative mass distribution of
-1og N(mﬁzsec—l) = - logm --17.1 where N is the cumulative
flux of photographic meteors into the Earth's atmosphere
having a mass of m kilograms or greater in good agree-
ment with an earlier study of satellite and radar data by
the writer. An independent check on the consistency of this
distribution is carried out with favorable results. The
velocity distribution is discussed using a very simple model
for the distribution of orbital elements. It is then possible
to define, for the first time, an analytic expression for the
Joint mass and velocity distribution function of photographic
meteors. The result is applied to calculate various quantities
of aerospace interest. The average meteor velocity is found
to be 20 Km/sec, and analytical expressions for the penetration
flux and the influx of meteor momentum are derived. The prob-
lem of the Earth's gravitational focusing 1s briefly considered
and 1s found to be insignificant .for these meteors.
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SUMMARY

The meteoroid environment of the Apollo Program is
subject to considerable uncertainties., This is due, on the one
hand, to a scarcity of direct experimental measurements of the
penetrating flux and, on the other hand, to uncertainties in
estimates based on indirect information. The flux range of
interest for Apollo consists of meteoroids which enter the
Earth's atmosphere with a frequency of from 10"11 to 10—6 times
per square meter per second. An important anchor point at the
high end of this flux is provided by the Explorer and‘Pegasus
direct measurements, The present study has been undertaken to
provide a useful anchor point at the low end of this flux range,

Just beyond the signifieant range for Apollo,

Photographic meteor data published by McCrosk y and
Posen comprise a statistically highly valuable sample of 2,529 .
meteors., A method of analysis, due to Orrok, is employed here
and the sample is divided, accordingly, into meteor mass distri-
butions at constant velocity and velocity distributions at
constant mass. With this method it is shown that the meteor
mass and velocity distributions.are independent to a good first
approximation, as Orrok has earlier suggested. An important
ddvantage of the method is that a much larger fraction of the
total sample becomes accessible for analysis than has been
Possible before without having to introduce weighting factors
which,.due to their largely intuitive character, comprise a major
source of uncertainty in the existing "state-of-the-art,"

Least squére analysis leads to a cumulative mass
distribution of log N (M'zsec"l) = ~-log m - 17.1 where N is the
cumulative influx of photographic meteors into the Earth's
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atmosphere having a mass of m kilograms or greater in good
agreement with an earlier estimate by the writer using mainly
satellite and radar data. An independent check on the consis-
tency of this distribution with the raw data is carried out
with favorable results. * ]

‘The velocity distribution is discussed using a
simple model for the distribution of orbital elements. Using
some of the results obtained during the analysis of mass dis-
tributions it becomes possible to define for the first time a
joint mass and velocity distribution (equation 4.3.6 in the
text) of photographic meteors. The results are then appliled
to calculate several quantities of aerospace interest.

The penetrating flux, derived from the model, is of
particular interest because it provides a fixed anchor point in
12 172 sec™ to 1071 172 sec”!. This is
indicated in the summary chart, Figure S, following this discus-

the flux range of 10

sion. It can be seen, from the figure, that the penetrating
flux derived from the present model agrees to within a factor
of about 3 with an earlier estimate by the writer based mainly

‘on satellite data. It is, therefore, satisfying to noté that

when the uncertainties in the present penetrating flux are
extrapolated in Figure 5, the Pegasus (5 or more orders of
magnitude higher in flux) data are within the margins of erfor.
The unrevised NASA model is seen to diverge considerably from
the main trend of satellite penetration measurements as well
as penetration flux estimates based on radar data and the
present results. It can further be seen, in the figure, that
the penetrating flux estimated from microphone measurements 1s
high, Because of their highly uncertaln nature, penetrating flux
estimates based on the influx rates of relative visual magnitudes
have not been plotted in the figure. '

Other results of this paper are the determination of
an average meteor velocity of 20 Km/sec with a root mean square
deviation of 7 Km/sec and an analytical definition of the influx
of meteor momentum. Lastly, the effect of the Earth's gravita-

tional focusing is considered and is found to be small, resulting»

in a decrease in flux of the order of 30% at infinity.
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MODEL DISTRIBUTION OF PHOTOGRAPHIC METEORS

I. Introduction

The model meteoroid environment of the Apollo Program
is subject to considerable uncertainties.* This is due mainly
to a scarcity of direct observational information regarding the
mass and veloclty distribution of meteoroids. An improvement
in thé definition of the meteoroid mass distribution and a
definition of a model velocity distribution would therefore lead
to increased confidence in the Apollo Model Environment. Estimates
ol mass distribution of photographic meteors have been given 1in
the past (see McKinley, 1961, for a review) and were originally
based on indirect evidence (e.g., distribution of relative
visual magnitudes). After Hawkins and Southworth (1958) reduced
360 meteors a direct analysis became possible. Using this sample
Hawkins and Upton (1958) obtained the result that the cumulative
Influx of photographic meteors into the Earth's atmosphere is
proportional to the - 1.34 power of the meteor mass. More
recently Dalton (1965) has recalculated the masses of these
meteors using 5pik's method and obtained a similar result.
Joint mass and velocity distributions have not, however, been

given in the literature.

McCrosk y and Posen (1961) have published the orbital
elements of 2529 photographic meteors.¥# The sample comprises
2174 meteors reduced by the authors using the graphical method
(McCrosk vy, 1957) and 355 meteors reduced by Jacchia using a
more accurate method (Whipple and Jacchia, 1957). In view of
the high statiétical value of the sample, 1t appeared worth
while to undertake a systematic study of the McCrosk y and Posen

meteors in order to define their mass and velocity distribution.

¥
See, e.g., Dohnanyi (1965) for a recent review and for

references.

¥%The authors have kindly made available a set of thelr
IBM data cards used in this study.
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In an unpublished study, Orrok (1964) has constructed
plots of mass distributions at constant geocentric velocity and
geocentric velocity distributions at constant mass of the
McCroskey and Posen meteors. Inspection of these plots led him
to conclude that the mass distribution function at constant
velocity is similar for the different velocity intervals he
considered. Orrok further suggested (private communication)
that.a more detailed‘treafment may reveal that the mass and
velocity distributions are independent.

The method used in this study. is similar to the one
employed by Orrok to investigate mass distributions at constant
velocity and veloéity distributions at constant mass. Details
of the procedure are given in Section 2 of this paper. A care-
ful study of the data indicates that, within a reasonable
approximation, the mass and velocity distributions can indeed
be considered independent.

The mass distribution of the McCrosk y and Posen
meteors at different velocities 1is consider@d in detaii in
Section 3. Least squares analysis of mass distributions at
16 different velocity intervals indicates that the cumulative
distribution is proportional to the - 1 power of the meteor
mass. This is somewhat lower than the - 1.34 power obtained
by Hawkins and Upton. The constant of proportionality is then
.determined from earlier work (Hawkins and Upton, 1958) .

In Section 4 of this paper, we treat the velocity
distribution of the meteor sample. The qualitative form of
the distribution is discussed in terms of a simple theoretical
model. Results from this section are then employed to derive
a seml-empirical velocity distribution which 1s analytically
defined with a least squares fit. Next a joint mass and
velocity distribution is obtained for the first time which

permits the analytical estimation of various derived quantities.

N
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" In Section 5 we consider the distribution of photo-
graphic magnitudes of the McCrosk y and Posen meteors. A simple
mathematical treatment indicates z mass Influx rate in complete
gualitative agreement with the results of our least squares
analysis’,

|
Engineering applications of the results are discussed
in Section 6. The average meteor veloclty is found to be 20 Km/sec.
The penetration flux is calculated and compared with other esti-
mates. Finally, a brief discussion of the momentum influx and

gravitational focusing are included.

2. Treatment of the Data

The 2529 meteors whose orbital elements were published
by McCrosk y and Posen (1961) include the 355 meteors precisely
reduced by Jacchia and 115 shower meteors that were partialiy
reduced by the graphical method. Since this analysis will be
concerned with sporadic meteors only, these 115 meteors as well
as any additional shower meteors in the sample have been omitted.
Meteors whose masses have not been determined are also excluded;

the result is a sample of 2,039 sporadic meteors.

The masses of the McCrosk y and Posen meteors have

been computed with the use of the formula¥®

T
(2.1) ‘ m = I dt

where m 1s the meteor mass, T, @ constant, called the luminous
efficiency, T is the lifetime of the meteor and I is the intensity
of light emitted,

¥
The formula actually used 1s an approximation to Eq. 2.1
proposed by Hawkins (1957) for data reduction purposes.
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The value of T, has recently been revised by Verniani
1

6.46
value w;th an estimated uncertainty of the order of 2. The

masses of the McCrosk y and Posen meteors given by Egq. 2.1 -with

of the old

(1964); the new value (ro = 19—19 c.g.s.) is

the old value of t_ have been multiplied here by 6.46 in order
to make them coincide with the more recent mass scale. All

masses quoted in this paper are in accordance with the new value of Ty

In what follows, a method of analysis suggested by
Orrok (1964) is employed inasmuch as the data are separated
into groups of different mass and velocity ranges. This then
permits a study of mass distributions at constant velocity and
velocity distributions at constant mass. The data have been =
divided into 20 logarithmically equal velocity intervals and 26

logarithmically equal mass intervals.

The gross features of the mass distribution as é
function of velocity are summarized in Fig. 1 which is a plot
of the meteor masses versus frequency on a doubly logarithmic
plot. The outermost curve represents all the meteors; each
successive plot is obtained by subtraction of successive
velocity groups from the total, as indicated. It can be seen
that each group of meteors has a similar distribution. The
number of meteors in a given velocity group first increases
-(from right to left, in the figure) with decreasing mass,
reaches a peak and then dimishes again becoming negligible for

masses smaller than ZLO"6 Kg.
Treating the data in a different manner, Orrok (1964)

has also observed these features; in what follows, our discussion

concurs to a large extent with that of Orrok.
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The increase in the number of meteors with decreasing
mass (right hand side of the figure) is to be attributed to the
natural distribution of meteors. It is generally assumed that
meteor masses are distributed according to an exponential law,

of the form

(2.2) ' fm(m)dm =  Am~ %dm

where fm(m)dm is the number of meteors having a mass between m
and m + dm, A and ¢ are constants and m is the meteor mass.
Accordingly, the approximately linear rise in the mass distri-
bution (from right to left on the figures) is due to a meteor
mass distribution of the form Eg. 2.2

The "bending over" of these curves (going from right
to left on the diagram) is the result of instrumental selection
effects. The brightness of the meteor trail on the photographic
plate 1s a function of the meteor mass and velocity as well as
other parameters. As the brightness of the image becomes com-
parable to the stellar background on the photographlc plate, an
increasing number of falnt meteors will escape detection.
Eventually, for small enough meteors, the image is so faint that

it is lost to the background altogether.

An interesting feature of the curves in Fig. 1 is
that the mass value at which the distribution curve "bends over"
(from right to left) decreases with increasing velocity. More
specifically, in the mass range of 1072 to 1073 Kg, the curve
representing all meteors is so heavily influenced by instrumental
selection that no meaningful distribution can be defined. At
higher velocitiles, however, an approximate power law mass distri-
bution is evident in this same mass range. Furthermore, the masses
of the smeller meteors (at higher velocities) appear to be distri-

buted with the same slope (on log-log plot), but at masses in
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excess of 10~ 3 Kg, a break in the slope may be present deflnlng
- a "shallower" dlstrlbutlon for the heavier meteors.

The velocity distribution of the meteors is plotted
in Fig. 2. Meteors with different mass ranges are plotted, in
this figure, as a function of veloc1ty It can be seen, from the
figure, that the heavier meteors have similar velocity distribu-
tions while the lighter méteors are clustered into the high velocity
region. This tehdehcy gives a totally different number vs.
veloclty distribution for the whole sample than is observed for
the heavier meteors which have a sufficiently bright trall to
be detected at low velocities.

The claim is now introduced, that, to a good first
épproximation, the differences in the shape of the number
distribution as a function of mass or velocity (Fig. 1 and 2)
for different groups 1s not a real effect but is due to instru-
mental selection, as has been pointed out earlier. This means
that the curves in Fig. 1 are taken to represent the true
distributions (without requiring corrections) for a given
velocity group down to that value of the mass at which meteors
are beginning to escape detection on the photographic plate.
Similarly, on Fig. 2, we claim the cufves to represent the
true velocity distribUtions for a given mass group where for
the smaller mass groups a minimum velocity exists at which the
detection of the meteor tralls is no longer assured. Using
this model, we shall proceed in constructing a distribution

function

(2.3) fm’v(m,v)dmdv = fm(m) fv(v) dmdv

where fm v(m,v) is the number of meteors having a mass between
3

m and m + dm and velocity between v and v + dv. fm(m) and fv(v)

LAy e,
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are independent distribution functions of the mass and velocity,
respectively., We follow usual practice in assuming further that
the mass distribution fm(m) is given by the simple power law,
Eg. 2.2

3. Mass Distribution

In this section, we shall determine the values of
the constants in the mass distribution fm(m). This will be
accomplished by a least squares fit to the data. We use 16
of the 20 different velocity groups; four groups do not contain
encugh meteors to be statistically significant and they belong

to velocities either less than the Earth escape veloclty of

11.2 Km/sec or in excess of the solar excape velocity of 72 Km/sec.

McCroskey and Posen attribute their presence to experimentsal

errors in the reduction process.

Figure 3 through 18 are plots of the meteors under
discussion. It can be seen that as the velocity increases, the
distribution includes more light meteors and less heavy ones.
This implies (cf., Fig. 2) that the.true meteor distribution
diminishes at higher velocities. The relative paucity of
small mass meteors at low velocities can be attributed to

difficulties of their detection.

The number of meteors in each mass range element is
indicated by the histograms. Since these plots are logarithmic,
the distribution function fm(m) does not colincide® with the
histograms and its value at each interval is indicated by solid
black circles. FEach "step" of the histogram is the integral of

%
This can be seen by recalling that fm(m)dm is the number
of meteors having a mass between m and m + dm and that on our

logarithmic plot the ratios of adjacent mass intervals are equal
< but not the mass intervals themselves.
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fm(m) over the respective elemental mass range. Taking
: _“ -0
(3-1) fm(m) = Am

the number of meteors having a mass between my and my is

. . m2 ‘ Aml°-a+1 u.—l
(3.2) N12 = fm(m)dm = 5T 1l - J
m

2
l .

B‘S
-t

=y

= constant x ml—o‘+l
since ml/m2 is constant for a logarithmically equally‘divided

mass scale. Eq. 3.2 then represents the histograms.

The straight line through the figures is a least
squares fit to the data of Eq. 3.2 . The number referred to
as "slope" 1s the quantity l-a and is given for each velocity

interval.

By "range of fit" we indicate the mass range over which
the data have been fitted, together with the number of meteors
used. The dashed horizontal line indicates the extent of a
second range over which a least squares program has been carried
.out where most of the infrequent heavy meteors have been rejected.
This second least squares program is of an auxiliary nature and

will be used only to estimate the uncertainty in our results,

The average value obtained for the slope, o-1, is
.93 + .15. The slopes for individual velocity classes are
plotted against velocity in Fig. 19 together with their standard
estimators of error. It can be seen, from this figure, that
the slopes are distributed falrly randomly with the velocity.
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The second least squares program, where most of the heavy and
less numerous meteors have been excluded, yielded an average
slope of 1.06 + .05. We, therefore, round off upwards the value

of a-1 to give a-1 s 1. Whence, the mass distribution becomes

(3.3) £, =m° x constant

and the conventionally qubted cumulative mass distribution is
(3.0) log N = -~ logm + B
with an uncertainty of about 10% in the slope.

To definc the value of the normalization constant B,
we shall follow Hawkins and Upton (1958). These authors estimated
the mean rate of observing sporadic meteors at 2.65 per hour and
a collection areca of 5,980 Km2 for the Super-Schmidt cameras. VWhile
thesc authors do not define the uncertainty in this estimate, the

approximately sinusoidal diurnal variation (Hawkins and Upton, 1958)

leads one to expect a root mean square deviation of the order of 30%.

The total number of meteors used here 1s 2,059. This
number includes 132 meteors with a mass equal to or larger than
1077 Kg (i.e., 1 gm). Hence the value of B is
KB»S) ' B =-17.10
and the cumulative flux is,

(3.6) _ log N = - log-m - 17.10

in MKS units.
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We have plotted, in Fig. 20, the result of the least
squarés estimates Eq. 3.6, together with earlier estimates ‘of
the cumulative flux. The curve marked Whipple, represent
Whipple's (1963) cumulative flux model

(3.7 log N = -~ 1,34 logm - 18.5 + 2.68 ldg Lgﬂ

where-p is the specific gravity of the meteor. Fig. 20 contains
a plot of Eq. 3.7 with p = .44, The curve, labeled Dohnanyi (1965)
is an extrapolation of Dohnanyi's estimate, based mainly on

satellite and radar data and is given by

(3.8) jog N = - logm - 16.9

It can be seen, from the figure, that our least squares fit

agrees excellently with the extrapolation of Dohnanyi's 1965
estimate, the latter being slightly higher." In view of the
uncertainties in Dohnanyi's estimate (Dohnanyi, 1965), however,
this agreement is somewhat fortuitous. Good quantitative agree-
ment exists between the least squares fit and Whipple's 1963
estimate for p = U4 and a mass rénge of about 107 to 10732 Kg.
The qualitative agreement is, however, poor because of the differ-
“ent coefficients for log m as given in Eq. 3.6 and 3.7 . The
least squares fit is low comparﬁdswith Whipple (1963) for o = .Ul

and mass smaller than about 10~ Kg and is high for masses , !

larger than about lO"Li Kg.
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I, Velocity Distribution

4.1 FEmpirical Distribution

We shall, in this section, discuss two problems related
with the velocity distribution. Using the results of the previous
section, we shall first correct the velocity distribution for
instrumental error and define the resulting model distribution
analytically. Finélly, in Section 4.2, the theoretical signif-

lcance of the distribution is discussed.

In the previous section, the semi-empirical formula
fho - R ) -2
(h,1) fm(m)dm =  constant m dm

was obtained, where dN is the number of meteors having a mass
between m and m + dm. AsSsuming that this is the true mass
distribution for each of the veloclty intervals used, one can
for the jth velocity interval

write,

m.,
2 m
y o J - - -2 = -1 3+
(h,2) le constant m dm ijl =

my

123 is the number of meteors used for the empirical fit
having masses between my and ms Kg in the J'E-lrl velocity interval.

Here N

¢, is then the integral of the veloclty distribution over the

J
. th p X :
J velocity interval. Since N and m, are known, we can

> M
obtain, empiriéally, the quanti%ies ij' The result is plotted

in Pigure 21 where the solild curve i1s a plot of the guantities

Cy It can be seen, from the figure, that starting with Earth
escape velocity, the number of meteors (at constant mass) increases
with the veloecity. It reaches a peak value in the velocity inter-
val of 16.4 to 18.4 Km/scc and then decreases until a velocity of

about 46.1 Km/sec 1s reached. At this velocity, a change in the
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distribution is indicated until the retrograde hyperbolic velocity
at 72 Km/sec is reached (beyond which velocity no statistically
significant number of meteors is found). '

The differential velocity distribution can readily be
obtained by noting that cj can be written as

, Vj+1
(4.3) c. = const Jf f(v) dv
. Vj

where f(v) is the velocity distribution function. For a small
enough velocity interval, the integral in Eq. 4.3 can be written,

approximately, as

n

Vitl _ 3

(h.4) f(v) dv = f(vj) (VJ.+l - Vj) f(vj) Avj
'
J

where Vv, is the average value of v over the interval. Whence,
f(v) can be expressed as

x constant

(4.5) f(vj) =

‘The velocity distribution f(v) is plotted in Fig. 21
as a dashed curve. It exhibits the same qualitative features
a5 the distribution of the quantities Cys except that f(v) is

steeper in the higher velocity region.
Pig. 22 is a plot of the quantities cj so normalized

as to present a direct basis for comparison with the McCroskey
and Posen data. This has been accomplished with use of Egq. 4.2
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where Nlé is calculated as a function of the guantities Cj for

a given ml/mz. When my <<m,, then Eq. 1.2 simplifies to

(h.6) , N = ¢, m

Since the guantities Cj have been determined we can

calculate the total number of meteors N in an arbitrary mass

12

range my to m, and velocity interval j which the McCroskey and

Posen data should contain if all féint meteors would be detected.

We used three mass intervals, 1.e., masses equal to
or larger than 2.8 x 1073 Kg, 6.1 x 107" Kg, and 107" Kg. The
raw data (cf., Pig. 2) for these distributions is also plotted
in Fig. 22 for comparison. Curves represent the McCroskey and
Posen data and solid points represent the corrected distribution
(Fq. 4.6) consistent with our model. The total number of

McCroskey and Posen meteors have also been plotted for comparison.

It can be seen that our model over-estimates the number of heavy
meteors (mass >.1O—3 Kg) but reproduces the distributions for

Y ’
smaller meteors rather well. The disagreement for heavy meteors

is not serious in view of their small number and lower statistical

significance. At low velocities, our curve is about two times
higher than the actually observed number of meteors with masses
I}

: Kg. This we attribute to the fact

“that many meteors in this range are not detected.

equal to or larger than 10

4,2 Theoretical Velocity Distribution

In this section, a discussion of the physical meaning
of the velocity distribution is presented. More specifically,
with the use of a very simple model, the gross features of the

velocity distribution are reproduced.

38
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The meteor velocity, V, near the Earth's surface can
be expressed as ‘

(4.2.1) Vo= ‘:._/VG‘2 + 125

where VG
Vs is the velocity at which the meteor would be travelling near
the Earth's surface if the Earth did not possess a gravitational

field (which accelerates the meteor).

The quantity VG can be expressed, in vector notation,

as
1 ”'= -
(h.2.2) VG VH VE

where VH is the heliocentric velocity of the meteor (i.e., ﬁhe
meteor velocity relative the sun), VE is the Earth's heliocentric
velocity and has a mean (scalar) value of 29.8 Km/sec. It is
readily seen that the scalar value of VG is given by

(4.2.3) ve = v2aiviloov.v

G H E E 'H ©OS ¢

where ¢ is the angle between VH and VE (i.e., ¢ is the complement
of the declination).

Two cases can at once. be distinguished: when ¢ < 9002
the meteor moves around the sun in the same sense as the Earth
and its motion is known as direct; when ¢ > 90°, the meteor
moves around the sun in a sense opposite to the Earth's motion

and its motion is called retrograde.

59

is the geocentric velocity of the meteor in Km/sec, i.e.,
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The guantities on the right'hand side of Eq. 4.2.3

can now be expressed in terms of orbital parameters:?¥

5 _ l-e

\
l
]
/

V, cos ¢ = + V Vp(1+e)

where e 18 the eccentricity of the orbit and p is the perihelion

distance (in astronomial units). These formulae are valid if

the orbital inclinatlon is Zero (i.e., the meteor orbit is in

the ecliptic). The + sign is to be used for direct orbits and
the -~ sign for retrograde orbits. Restricting the inclination
to 0° is not an untenably severe condition since most of the

meteors have small inclinations (McCroskey and Posen, 1961).

Substitution of Eg. 4.2.4 into Eq. 4.2.3 gives, for
direct orbits:

(4.2.5) S5 = 3-E2-2  \Vp(lte)

Consider the famlly of meteor orbits with p equal to
1.A.U.; Eq. 4.2.5 then becomes

{(4.2.6) L_ - 2 + e - 2 1l+te .
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These metcors may collide with the Earth at any angle ¢ < 90°
and their orbit may intersect the Earth's orbit al as many as
three points (depending on the eccentricity).

We notice, from Eq. 4.2.6 that VG = 0 when ¢=0 in-
dicating that in this case the meteor and Earth orbit coincide,
as they should. We further notice that VG2 increases when e

increascs and rqaéhcs a maximum value
(4.2.7) VG = (V 2 - 1) VE

when e=1. Since e > 1 represents mecteors coming in from outside
of the solar system and since no conclusive evidernce has ever
been presented regarding the existence of such meteors, we shall
only consider orbits for which e < 1.

Knowledge of the distribution of eccentricities e now
permits us to calculate the distribution of geocentric velocities
due to this clascs of meteors.

Consideration of the data indicates, as has been pointed
out by McCrosk y and Posen, that the eccentricities are distributed,
approximately as

(4.2.8) fe(e) = constant x e° for e < 1

where fe(e) is the distribution function of eccentricities, i.e.,

fe(e)de 1s the number of meteors having eccentricities between

e and e + de.

e s A~ B % T e T B < 2 TR Tt A w4 e % o en
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Given fe(e)? we now define¥ the distribution function
fo(Vy) of v

o
, A v, \° Ve ) [V :
(L.2.9) fG(VG) = V—) [ 7t 1) 1y * 21 X constant

E E E '
valid for
B Va -
(4.2.10) 0 <y V2 -1

E

The corresponding distribution of the Earth entry

velocity of the meteors is then

/ Lo 1L/ ’ 2
(h.2.21)  £,(v) = vVvZ-a2s [\vP1as + vl [V vPoa2s + avy | x

valid in the region
(h.2.12) 11.2 < V <.16.6

‘where V is expressed in Km/sec.

It can be seen, from Eq. 4.2.11 that fv(V) = 0 when
V = 11.2 and then increases with V, reaching its largest value
at the cutoff, i.e., at V = 16.6

¥
See Appendix A for details.
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We now consider the distribution of meteors having an
Earth entry velocity higher than 16.6 Km/sec. The data inaicate
that the distribution of the heliocentric velocities is very
strongly peaked near the solar escape velocity, indicating the
presende of a large number of meteors with.highly elongated
orbits. We, therefore, turn our attention to meteors whose
orbit has an eccentricity of approximately 1.

Letting e=1 in Eq. 4.2.5, we have:

(4.2.13) L= 3.2V

These meteors with parabolic orbits intersect the
Earth orbit at two points when p<l and at one point only (i.e.,
at perihelion) when p=1 and for p>i do not intersect at all and
whence they will not be considered here. Thus, the minimum
geocentric velocity in Eq. 4.2.13 corresponds to the case when
p=1.

(4.2.14) Ve/Vg = '\/3 -2V2 =2 -1
and the maximum value is obtained when p=0 ,
(4.2.15) VG/VE = V3 .

In the first limiting case (Eq. 4.2.14) we have meteors
catching up with the Earth from behind, at perihelion. At the
second limit (Egq. 4.2.15) we have meteors intersecting the Earth's

orbit at 90°; the rest of the possibilities represented by Eq. 4.2.13

are intermediate between these limits.
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The distribution of perihelia fp(p) of the lMeCrosk y
and Posen meteors have a form

{4.2.16) fp(b) = constant Pl‘5 s
‘ !
approximately. Hence the VG are approximately distributed as
. ‘,V‘\2 th
’ G
[ 7 = [y Qe -
(h.2.17) £q(Vg) VG{ 3 k ‘ X constant .

1

!

=t

The earth entry velocltles, V, are then given by

(4.2.18) fV(V) =V ( 3.7 *Elgi x constant .

1
L Vg

The range of velocities for which Eq. 4.2.18 is valid
can be obtained from relations 4.2.14 and 4.2.15. The result is

16.6 < V < 52.8 B

The velocity distribution function, Eq. 4.2.18 is a
rapidly decreasing function of V.' Over its region of definition,
it has its largest value at V = 16.6 Km/sec and then decreases to
- wero at V = 52?8 Km/sec. '

Figure 23 is a plot of the semi-empirical velocity
distribution function obtained in the previous section togéther
with fV(V) given by Egq. 4.2.11 and 4.2.18. The normalization
constant for fv(v) has been chosen to represent, approximately,
the number of meteors included in their respective intervals of
definition. Since our sole purpose here is to discuss the
qualitative features of the distribution, no attempt has been
made to obtain a quantitative fit with the data.
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It can be seen, from the figure, that in the velocity ,
range of 11.2 Km/sec to 16.6 Km/sec the theoreticallexpression §
for fv(v) deoes indeed reproduce the grbss trend of the datsa. ‘
The theoretical curve is concave downwards and the same trend 1is
exhibited by the empirical curve. It, therefore, follows that
the velocity distribution of meteors in the range of 11.2 Km/sec
to 16.6 Km/sec can be explained by assuming that most meteors ;
(in this velocity range) travel in direct orbits with small inclina-
tionsand perlhelion distances of about 1A.U. They may collide with
the Earth at perihelion in which case their radlant is directly |
opposite from the apex of the Earth's motion or they may "come in"
at some other angle, less than 90°, if their orbit intersects the E
Earth's orbit away from perihelion. [

i
!

The velocity distribution in the interval of 16.6 Km/sec
to 52.8 Km/sec 'is due mainly to particles moving in very elongated
(e is of the order of 1) and low inclination orbits. Both the
theoretical and empirical curves are concave downwards, exhibiting
similar trends. The theoretical curve underestimates the slow '
meteors relative to the faster ones, in this range. This is ;
probably due to the simple approximation Eq. 4.2.16 of the distri—
bution of perihelia. There 1s a fairly strong peak in the actual

distribution®* around p=1 which we have not included in the simple
model and which would cause the value of fv(v) near the low
‘'velocity limit to be larger than given by Eq. 4.2.18 . Around

50 Km/sec the theoretical distribution becomes very small by
comparison with the data. Also, at about this velocity, a

marked change 1in the distribution of the data is indicated. : i
This we attribute to the contribution of retrograde meteors, not

included in the theoretical model. The retrograde meteors are
seen to comprise a minor fraction of the total and their contri-
bution becomes discernible at velocities in excess of 50 Km/sec. :
Their distribution appears to be markedly different from the direct 5
meteors but a relative paucity of data in this region makes a de-
tailed discussion of these meteors difficult..

. .
See McCrosk y and Posen (1961), Fig. 5.
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b,2 Model Velocity Distribution

In this section we shall establish a simple analytical
expression for the semi-empirical veloclty distribution. Rather
than refine the somewhat cumbersome formulas Eqs. 4.2.11 and
4.2.18 we shall fit the empirical velocity distribution to a
simple exponential function of the form

(4.3.1) £(V) = A V% . )

A least squares fit#* gives

(4.3.2)  fu(V) = C x yi-0 £ .7 11.2 < V < 16.6

: 1
= Cx 1.61 x 107 x y"1-3 %3

s 16.6 <V < 72.2
with V in Km/sec and where the constants have been so chosen
that the distribution function is continuous. The quality of
the it can be seen in Fig. 28 to be quite éood. We have
plotted, in the figure, the semi-empirical velocity distribution

together with the least squares fit.

The normalization constant can be obtained by noting
that ' '

(4.3.3) fm,v(m,V) = fm(m) fV(v) x constant

where fﬁ V(m,v) is the joint mass-velocity distribution funection.

The mass distribution is then given by (using numerical values from

Egs. 4.3 and h.h)

" ‘
The least squares fit gives z maximum at 17 Km/sec but because
of theoretical reasons we shall choose the normalization constants

in such a manner that the maximum occurs at a meteor velocity of
16.6 Km/sec.
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Integration of Eq. 4.3.2 then gives

(4.3.5) ¢ = .971 x 10720

The joint mass and velocity distribution then becomes,

971 x 10720 2 y1-6 110 v < 16.6

(4.3.6) £ (mv)

m,

1.56 x 10 ~m CV "2, lo.o < v o< e 2

4

5. Mass Distribution from Photographic Magnitudes

In this section the photographic® magnitude distribution
of the McCrosk y and Posen meteors is examined briefly to see what
inferences, if any, can be drawn regarding the model mass distri-
bution obtained in Section 3. More specifically, the exponenl, «,
of the mass distribution, will be calculated from the photographic
magnitude distribution. Since this section utilizes a method
which is independent from the one employed in Section 3, the results
here serve as a check on the self-consistency of our model mass

distribution.

It is generally accepted that the distribution of photo-

graphic magnitudes is of the form

¥
In what follows, b hotographic magnitudes we mean absolute
> O s (&
photomraphic magnitudes at maximum light.
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(5.1) - fyl{M) aM = constant x M oam

where fM(M) dM is the number of meteors entering the Earth's
atmosphere with photographiec magniﬁudes between M and M + dM
and r is‘a constant. ' ‘

A theoretical relatiqnship between the photographic

magnitude M and meteor mass m can be expressed (Verniani, 1961;
Jacchia et al 1965) in the form

(5.2) M f‘KQ f gl'log‘v + K, log m + Kg log zp ,

where the varlous K's are constants, and Zgp is the cosine of

_ the zenith angle.’

Introducing a mass, velocity and zenith angle distribution
function of the form ’

m, V*ZR R - v ‘R

N

‘one may procee& to express the- exponent @ in terms of the quantity

r.in Eq. 5.1 . To earry out this program, one has to, with the
use of Eg. 5.2, eliminate the mass term in Eq. 5. 3, paying due
attention to the rules of transforming distribution functions
{see the Appendix) " When the resulting expression is integrated
over all V and ZB, the result is the distrlbutlon func{ion of
photographlc magnltudes

One, tﬁerefore, has,

1

(5.’“) . o fM,V’ZR(M,V,?’R):m fm v, 7 (m(n) SV, 7 )
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where J is the Jacobian of the transformation

a(M,v,zR)
(5-5) J =.m .

Some algebra then gives

(5.6) f - (M,v,z,) = 107 M(e-1)/K, x (terms in V and z.)
| M,V,zp , _ R

Integrating this expression over all values of V and
Zp gives, symbolically,

o ~M(a-1) /K
(5.7) £, (M) fj[dv J[dzR fM,v,zR(M’V’ZR) = constant x 107 M(e-1)/Kp

where fM(M) is the sought expression.

Comparing Eq. 5.7 with 5.1 then implies

_ oa-1.
K2
(5.8) 10 = p
or
(5.9) - %:l = log r.

2

A semilogarithmic plot of the empirical photographic
magnitude distribution of all 2,529 meteors published by McCrosk y
and Posen is given in Fig. 25. The dashed straight line is a
least squares fit to the "straight line" portion of the distribution.
Our result is .

(5.10) £,(M) i = constant 100-49 £ .05)M 4y
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Comparison of (5.10) with (5.7) gives

(5.11) 49 + .05 = - 24
2

The value of K2 has been empirically determined by Jacchia et al
as K2 = - 2.25. Hence, the value of the exponent for the mass
distribution is ' ‘

(5.12) e = 2.1 4+ .1

which is somewhat lower than the widely used value of 2.34 given
by Hawkins and Upton (1958).

This derivation of Eq. 5.12 is correct if the photo-
graphlc magnitude scale of Jacchia et al coincides with that of
McCrosk y and Posen. If a systematic difference exists be-
> in Eq. 5.11
cannot be used without correcting the number on the left hand

tween the two scales, than the value of - 2.25 for K
side of the equation for the discrepancy.

Kresak (1964) has pointed out a systematic difference
between the photographic magnitude scales of McCrosk y and
Posen and that appearing in 300 short trail meteors reduced by

Hawkins and Southworth. Kresak found that this discrepancy is
given by

(5.13) M (McCrosk y) = .8 M (Hawkins) - .18
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No such comparison is available regarding the scale of Jacchia

et al. Since, however, the graphic reduction method of McCrosk.y
- and Posen is 1ess accurate than either of the other two, it may
be assumed that Jacchia's scale of M coincides with that of the
short trail method. .

fM(M) can now be expreséed in terms of the scale of
magnitudes of the short trail method; combining Eq. 5.10 and

5.13 gives:

(5.14) £,(M) = constant 10(i39 + .04) M(Hawkins)
and

(5.15) - %é'— = .39 + .o

Substituting for K2 now gives

(5.16) o = 1.88 + .09

which is even lower than the value of 2.1 from Eq. 5.12. This
value of « contains an error inasmuch our least squafes it

.Eg. 5.10 is based on 2529 meteors and 14% of these meteors have
been reduced by Jacchia. Consistent with the postulate that
Jacchia's scale is the same as Hawkins', «=1.88 is a lower limit.

This lower value of a 1s also in good agreement with the:

result, o = 2, obtained in Section 3 of this study.
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6. Aerdspace'Applications'

In this sectlon, ve shall‘dlscuss several quantltles‘
of engineering interest that can -be derived from Eq. 4.3.6. oOf
partlcu;ar 1np§rest are the penetratlon flux, momentpm7flux and

average velocity defined by our model.

6.1 Average Vélocity

The average meteor vechify can be computed from

Eq. 4.3.6 ... Ode can write, by definition,

T
%

i
Py

[[dv fm,v(rfl,v)‘

where <V> is the expectation value of the ve1001ty and the inte-

ir Jav £ (m,v) v

(6.1.1) S v

gral 1s to. be talen over all ve1001L1es
i \ ) : ;
U51ng ‘numerical values glven in Eq. Mfé.éa the inte-

gral deflnlng <V»> can be evaluated to give,

It 3
¥

y

(6.1.2) ‘ &V> = 19.2 Km/sec, . | . !

-

It is. of interest to compute the root mean square
velocity, i.é., the square root of the average velocity square.

Again, by definition, we have " {; ‘

-
jdV Fp g (M)

(6.1.3) <VEs = - : y .c .
: jdV T, Xmsv) .
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‘With the use of Eq. 1.3.6, the above relation can be
evaiuated, numerically; the result is

(6.1.1) V:§§: = 20.6 Km/sec

!

The root mean square deviation of the velocity AV

A RMs ¢&D be
found from Eq. 6.1.4 and 6.1.2. One has:
~ /1 a2 2
(6.1.5) bVpyg = \/|<v > - <V>“| = 7 Km/sec

and therefore, we can write, for our model
(6.1.6) average velocity = 20 + 7 Km/sec

The value of 20 Km/sec for the average velocity is
considerably lower than the 30 Km/sec used for the Apollo model
meteoroid environment. It is therefore recoﬁmended that the
model should be revised accordingly.

6.2 Penctration TFlux

Jt is of considerable interest to estimate the flux of
particles penetrating a given thickness, T, of equivalent aluminum.
Kinetic energy scaling willl be employed here, i.e., the penetration
depth is taken to be proportional to the two-third power of the
particle kinetic energy. Computation of the influx of particle

kinetic energy is therefore necded, to begin with.
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For a given mass and veloc1ty dlstrlbutlon f (m v)

the joint velocity and kinetic energy (— mv ) dlstrlbutlon is

(6.2.1)" . _ Gy, v),v]
Y,V ||

where y is the kinetic energy, i.e., y = mv2 and where J is

=

the Jacobian of the transformation for a function of m,v to be

transformed into a function of y and v.

We shall be interested in the cumulative distribution
function of the kinetic energy, i.e., we want to compute the

guantity

(6.2.2) F>(y) = J( dy J[dv fy’v(y,v)
y

where I'_(y) is the number of incident particles per square meters

per second having a kinetic energy of y joules or greater.
Using Egs. 6.2.1, 6.2.2, 4.3.6, one obtains

-1
(6.2.3) F (y) = 1.73 x 1079 x (% mv2)

where m is in Kg and v is in m/sec.

Dalton (1965) has recently obtained, empirically, the
influx of kinetic energy of the meteors reduced by Hawkins and
Southworth (1961) with the short trail method. After applying
corrections for several selection effects, Dalton obtains a

value of - .92 for the exponent of the kinetic energy in the
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distribution function. Since the exponent in our expression
(6.2.3) is -1, our model predicts a trend for the distribution
within 8% of Dalton's results; the qualitative agreement is
therefor§ excellent.

In order to compute the penetration flux, use is made
of the Ames (Summers, 1959) penetration criterion in the form

' ‘ 1/3
L Pp /3 F% mv® c052e
(6.2.1) T = 6.4 (-p-—) [

T -°TCT2

where T is the thickness of sheet metal penetrated by a pro-
jectile with density pp and kinetic energy % mv2 (in joules).
The quantity orp is the target density, CT is the velocity of
sound in the target and 0 is the angle of incidence of the pro-
jectile (measured, as usual, from the normal to the target
surface). In Eq. 6.2.4 we assumed that T equals 1.8 (Orrok,

1964) times the penetration depth into a semi-infinite target.

Choosing soft aluminum for a standard target, one has
Py = 2.7 x 103 Kg/m3 and CT = 5,1 x 103 m/sec. For the meteor

density pp we choose a value of 103 Kg;/m3 (Verniani and Hawkins,

1965), and we use a value of 1/2 for cos © averaged over a
hemisphere. Substitution of these quantities into Eq. 6.2.14
then gives,

. . . _u‘ r > 1/3
(6.2.5) T = 7.03 x 10 = omv
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“Combining Eq. 6.2.3 with 6.2.5 then gives

(6.2.6) F (T) = 6.02 x 10719 173

I .
where F)(T) is the cumulative flux (in meters—2 sec—l) of particles

penetrating an aluminum §heet T meters or more in thickness. The
uncertainty in the coefficient of Eq. 6.2.6 is of the order of

X lOi‘u(Dohnanyi; 1965). The uncertainty in the exponent of T

is due to the uncertainty in the exponent of m in the mass distri-

bution and is of the order of 10%.

Using mainly satellite information, Dohnanyi (1965) has
estimated the penetration flux and obtained

(6.2.7) F(T) = 2 x 10718 =3

with an uncertainty of the order of 1oi'“ in the coefficient.

It can be seen that Egs. 6.2.7 and 6.2.6 are in very good agree-
ment with each other; Dohnanyi's estimate is higher by about a
factor of 3. |

In an earlier paper, Orrok (1963) studied the relation- ?
-ship between the visual magnitude of meteors and their penetrating

power; he obtained

(6.2.8) Fo(T) = 2 x 10717312 973 |
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This relation is higher than Eq. 6.2.6 by a factor of about 30,

the discrepancy being due to different normalization constants

used by Orrok. According to the scale he used, the zero visual

magnitude meteor traveling at 30 Km/sec has a mass of about

2.5 X 10'3 Kg while according to the more recent scale (Verniani,

196L) used here, such a meteor has a mass of about .8 x 10"-3 Kg.

Orrok has, furtheriore, normalized his cumulative influx rate at

the fifth visual magnitude uSing Whipple's (1958) estimate which

is high compared with'the licCrosk y and Posen lieteors. ;

6.3 Influx of Momentunm

For certain applications, one needs to know the
expression for the influx of particle mementum. Using our

distribution function Eq. 4.3.6, one obtains

(6.3.1) F (mv) = 1.625 x 10”39 (mv)~ 3%

>

the cumulative influx per square meter per
second of perticles with morentum of mv units or larger. m

is expressed here in Kg and v in Km/sec. The uncertainty in

the exponont of mv is about 10%.
Dalton (1965) obtzined an expression for the cumulative
momentur influx with an exponent of - 1.09. This is seen to be
1
within the r of uncertainty of our present estimate and

hence our exponent is in good agreement with that of Dalton.
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6.4 Gravitational Focusing

For certain aerospace. applications it is of interest
to estimate the extent of particle concentration near Earth as
a result of the Earth's gravitational attraction. 5pik (1951)
has shown that ’

, flux (at R.) V'2‘+ s.@
(6.4.1) 6 = 1 . a "1
et flux (at R2) 2 2

Va + 82

where ¢ is the ratio of the flux at distance Rl from the center
of the Earth to the flux at a distance R (from the center of the
Earth). Va is the meteoroid gedcentric velocity. The quantity
S is given by

2 _ 20
(6.4.2) S = B

where G is the universal gravitational constant, y the mass of
the Earth and R is as defined above. »

Taking Rl at the surface of the Earth and expressing
VG in terms of the Earth entry velocity V one obtains, after
some algebra,

(6.4.3) fm,v(e) = T

L 125
m,v(at surface) x |1 + (E - 1) 5 J

v

whéfe'fm V(E;) is the mass and velocity distribution at a distance
3
e from the center of the Earth with ¢ expressed in units of Earth

radii.
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.Using the model distribution Eq. 4.3.1 one can integrate
Eq. 6.4.3 over all the velocities to obtain the mass distribution,

The result is
(6.0.m) 5 (o) = {7.97 - (1 -3)2.5) x 10728 72

It can be seen thal even at large distances from the earth (e=«)
the flux 1s decreased by less than 30% due to gravitational
focusing. Since a difference of 30% is well within the margin
of error, it is recommended that no distinction be made between
near Earth and ‘deep space fluxes of visual meteors as far as

gravitational focusing is concerned.

7. Conclusion

The mass and velocity distribution of the MeCrosk y
and Posen meteors have been studied. Least square analysis
“leads to a distribution function given by Eq. 4.3.1

it

(7.1) £ (m,v) = 971 x 10720 072 vl 110 < v o< 16.6

m

1A

H]

1.56 x 10733 w72 v 13, 16.6 < v < 72.2

where m is the metecor mass in Kg and V is the meteor Earth entry

velocity in Km/sec. The cumulative mass distribution then becomes

(7.2) F (m) = 7.97 x 10718 -1

where F>(m) is the cumulative influx of meteors per square meter
per second having a mass of m Kg or more. This relation disagrecs

with Whipple's 1963 model, which has a nass exponent of - 1.34
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and has been adopted into the NASA model. 1In the flux range of
interest for Apollo, which includes flux values of 107 m2sec ™t
or higher, Whipple's 1963 model (with p=.44) is high compared
with an extrapolation of Eq. 7.2. The average meteor velocity,
defined by Eq. 7.1 is 20 Km/sec. The Earth's gravitational
focusing effect has been examined and no evidence for a strong

near EBarth concentration has been found for meteors in the

VS

1011-JSD-gdn - J. S. Dohnanyi

photographic range.
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A-1, Transformation of Distribution Functions of One Variable

Suppose we have a distribution function of a variable X
is given by f (x) and wish to find the distribution function

of the variable y given by
(A-1-1) y = g(x).
If x can be solved for y, in the form

(A-1-2) x; = g;l(y)

th real root of x in

where ggl(y) denotes, symbolically, the i
Eq. A-1-1, then the distribution function of y,fy(y) is given

by (for proof, see, e.g., Papoulis, 1965)

f (xl) fx(xi) f(xn)

== X -
(A-1-3) f‘y(y) '[E‘,W‘l‘... +@W+ ... '[_g—"(x*nﬂ

where Xy +ee Xy ... X, oare the n real roots of Eg. A-1 and where

g'(x) = dg(x)/dx.

A-2. Transformation of Distribution Functions of Two Variables

Suppose we have a distribution function of two variables,

x, and X5 denoted by fx

1

(x,,%X,). We wish to find the distri-
X5 1272

1

bution fuanlon fylyz(yl,y2) of the var1able§ yq and ¥y, given by

e (e o
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e N =
(A-2-1) ¥y yl(xl,xz)

y2 = yg(xlsxz) .

i

Suppose we can solve Eq. A-2-1 explicitly for x, and

X obﬁaining n real roots, say

X X X

1 2 2
1 > X] X5 o.. X5 X

n

in terms of ¥q and Yo Then the sought distribution function,

. . . -
fylyz(y2 y,) is given by (see Papoulis, 1965)
1 .2 n _n
fxlxg(xl x5) fxlx2(x1 *5)
(A-2-2) fy y (ylyz) = SR + ...+ —
172 9 (x] x50 RECSUR SN
1.1 n _n O . .
where X} X5 ... Xy X5 are the n real roots of Eq. A-2-1 and
a(yyv5)

where J(xl x2) is the Jacobian of the transformation 3T§I§57»_

and is given, explictly, by the determinant

, 3y 4 V4

- axl ax2
J(xlxz) =

aXl 3X2

Simple substitution of variables into these relations
permits one to perform all the transformations of distribution

functions used in this paper.
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